Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Mikrochim Acta ; 189(12): 443, 2022 11 09.
Article in English | MEDLINE | ID: covidwho-2103917

ABSTRACT

The epidemic of infectious diseases caused by contagious pathogens is a life-threatening hazard to the entire human population worldwide. A timely and accurate diagnosis is the critical link in the fight against infectious diseases. Aptamer-based biosensors, the so-called aptasensors, employ nucleic acid aptamers as bio-receptors for the recognition of target pathogens of interest. This review focuses on the design strategies as well as state-of-the-art technologies of aptasensor-based diagnostics for infectious pathogens (mainly bacteria and viruses), covering the utilization of three major signal transducers, the employment of aptamers as recognition moieties, the construction of versatile biosensing platforms (mostly micro and nanomaterial-based), innovated reporting mechanisms, and signal enhancement approaches. Advanced point-of-care testing (POCT) for infectious disease diagnostics are also discussed highlighting some representative ready-to-use devices to address the urgent needs of currently prevalent coronavirus disease 2019 (COVID-19). Pressing issues in aptamer-based technology and some future perspectives of aptasensors are provided for the implementation of aptasensor-based diagnostics into practical application.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , COVID-19 , Communicable Diseases , Humans , COVID-19/diagnosis , Point-of-Care Testing , Communicable Diseases/diagnosis
2.
J Med Chem ; 64(24): 17601-17626, 2021 12 23.
Article in English | MEDLINE | ID: covidwho-2084518

ABSTRACT

Nucleic acid aptamers are single-stranded DNA or RNA molecules selected in vitro that can bind to a broad range of targets with high affinity and specificity. As promising alternatives to conventional anti-infective agents, aptamers have gradually revealed their potential in the combat against infectious diseases. This article provides an overview on the state-of-art of aptamer-based antibacterial and antiviral therapeutic strategies. Diverse aptamers targeting pathogen-related components or whole pathogenic cells are summarized according to the species of microorganisms. These aptamers exhibited remarkable in vitro and/or in vivo inhibitory effect for pathogenic invasion, enzymatic activities, or viral replication, even for some highly drug-resistant strains and biofilms. Aptamer-mediated drug delivery and controlled drug release strategies are also included herein. Critical technical barriers of therapeutic aptamers are briefly discussed, followed by some future perspectives for their implementation into clinical utility.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Antiviral Agents/therapeutic use , Aptamers, Nucleotide/therapeutic use , Communicable Diseases/drug therapy , Animals , Anti-Bacterial Agents/chemistry , Antiviral Agents/chemistry , Aptamers, Nucleotide/chemistry , Biofilms , Humans , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL